Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biscayne Bay is a coastal estuary that historically relied on rainfall and groundwater inputs from the karst Biscayne aquifer. The construction of major canals along the coastline has released point-source freshwater inputs into the bay, detrimentally affecting the Bay’s ecosystem balance. This project investigates the proportional inputs of freshwater between the wet and dry seasons in Deering Estate, adjacent to Biscayne Bay. The objective of this project was accomplished by analyzing the water chemistry of the bay using naturally occurring geochemical tracers. Water sampling occurred from May to August (wet season 2022) and January to March (dry season 2023); at an inland freshwater spring and on Biscayne Bay. Water samples were analyzed for δ18O and δ2H values, and Sr2+/Ca2+ ratios as geochemical tracers. The highest and lowest salinity values observed in the wet and dry seasons, at both the freshwater spring and Biscayne Bay sites, were before and after a major rain event, respectively. The chemical analysis supports that rain is the dominant source of freshwater input into the bay at our sampling location, and the freshwater spring is dominated by groundwater and canal water during the wet season. During the dry season, groundwater and canal water are the dominant source for the sampling location in Biscayne Bay and the dominant source of freshwater input for the freshwater spring. However, all three endmembers contribute seasonally. Understanding freshwater inputs to this crucial estuary will provide important information for current restoration efforts of Biscayne Bay, specifically around the Deering Estate area.more » « less
-
Abstract Animal movement strategies, or suites of correlated traits reflecting how individuals respond to their environment, are often shaped by spatiotemporal heterogeneity and predictability in physicochemical conditions, resources or risk.While movement strategies have been well studied in terrestrial animals using high‐resolution satellite telemetry, our understanding of how seascape heterogeneity influences movement strategies in aquatic systems remains limited due to technological constraints.We used a non‐gridded passive acoustic telemetry array to identify and classify movement strategies of Common Snook (Centropomus undecimalis) and Atlantic Tarpon (Megalops atlanticus) within two estuarine systems in Everglades National Park, Florida. We then evaluated how seasonal heterogeneity and environmental predictability influenced movement strategy selection.Using a suite of movement metrics, we identified three statistically distinct movement strategies that varied in movement frequency, home range size and site fidelity. Fish in more homogeneous environments tended to adopt strategies involving frequent movements, larger home ranges and shorter stays in a given location. In contrast, increased seascape heterogeneity was associated with movement strategies characterized by less frequent movements, smaller home ranges and longer residence times. We also found species‐level differences in strategy use, with the predictability of dissolved oxygen, salinity and turbidity emerging as key environmental drivers of movement strategy selection.These results demonstrate that seascape heterogeneity and predictability strongly influence the emergence and selection of movement strategies in estuarine predators. Our findings provide a novel approach for identifying movement strategies in aquatic systems using passive acoustic telemetry and highlight the broader importance of seascape complexity in shaping animal behaviour and predicting responses to environmental change.more » « lessFree, publicly-accessible full text available October 23, 2026
-
White, Timothy; Provenzale, Antonello (Ed.)
An official website of the United States government

Full Text Available